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Abstract 

We show, that higher analogs of the Willmore functional, defined on the space of immersions 
M* --f @, where M2 is a two-dimensional torus, [w3 is the three-dimensional Euclidean space 
are invariant under conformal transformations of [w”. This hypothesis was formulated recently by 
I.A. Taimanov. 

Higher analogs of the Willmore functional are defined in terms of the Modified Novikov-Veselov 
hierarchy. This soliton hierarchy is associated with the zero-energy scattering problem for the two- 
dimensional Dirac operator. 

Subj. Class.: Differential geometry; Strings 
1991 MSC: 53C42,53AlO, 35PO5,35Q58 
Keywords: Generalized Willmore functionals; Dirac operator; Conformal invariants; Bloch variety 

1. Introduction 

To start with, we would like to recall the following interesting fact from the theory of 
two-dimensional surfaces in R3 (see [20, p. 1 lo] and references therein). Let X : M2 -+ R3 
be a smooth immersion of a compact orientable surface M2 into the Euclidean space lR3 
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(i.e., a smooth map from M* to [w3 such that its Jacobi matrix is non-degenerate everywhere 
on M*, but the image is allowed to self-intersect). Let T be the Willmore functional 

T= s H= dS, (1) 

M? 

where H denotes the mean curvature, dS is the volume element on M2 generated by the 
immersion. Then T is invariant under conformal transformations of lw3. 

It is natural to pose the problem of constructing other conformal invariant functional of 
immersions. 

It is well-known, that many constructions from the soliton theory have natural analogs 
in geometry and vice versa. In particular, important information on how to study immer- 
sions of two-dimensional surfaces into [w3 using soliton methods has been provided [l] by 
AI. Bobenko. Any immersed surface possesses (at least locally) a conformal coordinate sys- 
tem (see for example [3, p. 1 lo]), i.e. a coordinate system such that ds* = f(~, Z) dz d?. In 
conformal coordinates this immersion can be locally represented by the Generalized Weier- 
strass Formulas (see Section 2) and the potential U (z, 2) is uniquely defined. In [ 171 it was 
shown, that any analytic immersion of a compact orientable two-dimensional manifold into 
lR3 can be globally represented by these formulas. 

The generalized Weierstrass formulas are based on the zero-energy eigenfunctions of 
the two-dimensional Dirac operator with a real potential U(Z, 2). The zero-energy spectral 
problem for this operator arose in the soliton theory as an auxiliary linear problem for the 
hierarchy of the Modified Novikov-Veselov equations (MNV) (see [2]). These nonlinear 
integrable equations with two spatial variables, introduced by Bogdanov, have infinitely 
many conservation laws. 

Konopelchenko and Taimanov [9] showed that the quadratic MNV conservation law 

HI =4 
ss 

U*(Z, 2) dx A dy, z = x + iy (2) 

coincides with the Willmore functional T. Taimanov [ 181 formulated a hypothesis that all 
higher MNV conservation laws also generate functionals on immersions of closed orientable 
two-dimensional surfaces into [w3, invariant under conformal transformations of lR3. He also 
did some numerical experiments with surfaces of revolution, confirming this assumption. 

During his visit to the Freie Universitat, Berlin, in September-October 1996, Taimanov 
attracted the authors attention to this problem. In the present text we prove this hypothesis 
for immersions of tori into [w3. 

Of course, it would be natural to extend this result to immersions of higher genus surfaces 
into [w3. But here we meet the following problem. In contrast with HI the higher conservation 
laws are non-local in terms of the potential. For double-periodic potentials they are defined 
in terms of the zero-energy dispersion curve (the Riemann surface of the zero-energy Bloch 
function). If the genus is greater than one, we have to study modular invariant Dirac operators 
in the Lobachevskian plane with a non-Abelian group of translations. The corresponding 
Bloch theory has not been constructed until now, thus we could not define the higher 
conservation laws. It would be interesting to develop the corresponding Bloch theory, but 
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this problem looks rather non-trivial. Thus, we restrict ourself to the genus one case only, 
where all integrals of motion are well-defined. 

The idea of our proof is the following. We show that infinitesimal conformal transfor- 
mations of lw3 correspond to infinitesimal Darboux transformations of the Dirac operator 
(infinitesimal dressings with degenerate kernels). It is convenient to express these defor- 
mations in terms of Cauchy-Baker-Akhiezer kernels, introduced by Orlov and Grinevich 
in [6] (see also the review [7]). From the explicit formulas for such deformations it fol- 
lows, that the deformed zero-energy Bloch function is meromorphic on the same Riemann 
surface as the original one. Recalling, that this Riemann surface completely determines all 
conservation laws, we complete the proof. 

Remark 1. An alternative proof of the theorem, namely that conformal transformations 
do not change the zero-energy Bloch variety, was obtained by Pinkall (private communi- 
cation). He calculated the action of finite conformal transformations on the Bloch function 
using a quatemionic representation of the generalized Weierstrass formulas as suggested 
by Kamberov et al. [8]. 

Remark 2. Finite Darboux transformations for the Dirac operator are discussed in the book 
by Matveev and Salle [ 131, Laplace transformations for the Dirac operator are discussed by 
Ferapontov [5]. 

2. Generalized Weierstrass construction 

Let L be the two-dimensional Dirac operator 

(3) 

with a real potential U(z, Z). Let 9(z, 2) be a zero-energy solution of the Dirac equation 

Then the generalized Weierstrass formulas (see [ 171 and referees therein) 

z 

~1 (z, Z) + iXz(z, Z) = Ct + iC2 + i 
s 

(@f(z’, Z’) dz’ - *;(z’, Z’) cl?‘), 

xl(z,Z)-iX2(z,Z)=C~ -iC2+i 2 1k 
s 

(ly2($ 5’) dz’ - Iv2(z’ 2’) d?‘), 1 ’ 

ZO 

(5) 

i 
x3cz, 2) = c3 - 

s 
(LY~(z’, z’)+, (2, 2) dz’ + *I (z’, Z’)‘&tz’, 2’) dZ’), 
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defines a map of the plane R* to the Euclidean space R3. In (5), zu is a fixed point in the 
--plane and the integrals are taken over some path connecting the points zo and z. From (4) i. 
it follows that the integrands in (5) are closed forms, thus the map does not depend on a 
specific choice of the path. Here Cl, CZ, C3 are arbitrary real constants. 

The formulas (5) are equivalent to: 

d[a*X, + a’X2 - a3X31 

where IT ’ , 02, cr3 are the standard Dirac matrices 

@I=[; J, n?=[y ;i]. @3,[; “i], 

(6) 

(7) 

The generalized Weierstrass map is conformal, i.e. the metric dS2 on R* induced by this 
map is proportional to the standard one: dZ2 = g(z. 2) dz dj. 

Assume that we have a map of a two-dimensional torus into R3. Then the corresponding 
potentials U(z, 2,) is periodic 

U(z + iT’, , i + TI) = U(z + T2,? + T2) = U(z, 2). (8) 

Also the eigenfunction ck(z, 2) is periodic or anti-periodic, i.e. 

!P(z + TI , z + T,) = Wl!P(Z, a. 
~(z+Tz,z+T*)=W2~(z,Z), M+=W;=l. 

(9) 

The coordinate z is defined up to linear transformations z + uz + b, a and b E @, u # 0. 
Thus, without loss of generality we may assume 

Tl = 1. T2 = r, Imt > 0. (10) 

Conditions (8) and (9) are necessary, but, of course, not sufficient for periodicity of the 
generalized Weierstrass map. Necessary and sufficient conditions for periodicity can be 
formulated in terms of the Bloch variety. They are obtained in a forthcoming paper by 
Taimanov and Schmidt. We do not use these conditions in our text, thus we will not discuss 
them in further details. 

3. Bloch function and Bloch variety 

In this section we assume that U(Z, 2) is real, smooth, and double-periodic (8). With 
any such potential we associate a one-dimensional subvariety r in the two-dimensional 
complex space (C\O)2. 

The first object we need is the Bloch function. By definition, the Bloch functions 
+(w), ~2, z, 2) are quasi-periodic solutions of the Dirac equation (4) with the following 
periodicity properties: 



PG. Grinevich, M.U. Schmidt/Journul of Geometry and Physics 26 (1998) 51-78 55 

$,(w, w2, z + 1, z + 1) = WI~cI(WI, wz>z, a, 

$(Wl, w2, z + t, z + t> = W274,(Wl, w2, z, 3. 
(11) 

The pairs of multipliers 201, w2 possessing at least one non-zero Bloch solution form a 
complex one-dimensional subvariety f E (C\O) x (@\O) (see [ 121). This variety is called 
the Bloch variety or the zero-energy dispersion curve. For a generic potential U(Z. 2) the 
genus of r is infinite. 

The Bloch functions form a one-dimensional holomorphic bundle over r (it is shown 
below that for generic h E f, a Bloch solution is unique up to normalization). It is convenient 
to fix a section of this bundle @(h. z, Z), by assuming 

$I(k. z. Z) + $2(k, z, .?)I:=:, = I, 

where ~1 is an arbitrary fixed point. 

(12) 

The logarithms of the multipliers wt (h), w2(h) 

1 1 
PI(~) = 7 ln WI(~). p2@) = ilrl In w2@), (13) 

are called quasi-momentum ,functions. Of course, they have non-trivial increments while 
going along cycles in r, and they are defined up to adding 2xnt, 2nn2/ /r 1, respectively, 
where II 1 and n2 are some integers. Thus, the functions Im p1 (A), Im p2(k) are single-valued 
in r. The d#erentials of the quasi-momentum functions 

dpl (A) = ;p, (h) dh> dpz@) = &1’2@) dk, (14) 

are single-valued and holomorphic on the finite part of r. 
In our text the Dirac operator (3) is symmetric and the potential U (z, Z) is real. Let us show, 

that the corresponding Bloch variety f possesses Z’2 x Z2 as a group of symmetries. An 
analogous statement for the fixed-energy Bloch variety corresponding to a two-dimensional 
self-adjoint Schrodinger operator was proved in [lo]. The proof from [lo] may be applied 
to (3) after a minimal modification. 

The operator (3) with real potential II (z, Z) has the following symmetry. If $( w 1, ~2, z, 2) 
is a Bloch solution of (4) then the function 

L 

?$lJ’ (Wl, w2, z, i) = 
( 

1cr2(w,. w2,z, Z) 

-~1(wI~ w2> 7.3 Z) > 
(15) 

is also a Bloch solution of (4) with multipliers 61 and W2 respectively. Thus, the surface f 
possesses an antiholomorphic involution (we denote it by a0 for historical reasons) 

a0 : r + I-, a@ : (Wl, w2) --+ (Wl I W2), (16) 

and 

Q+(k, z, Z) = n-‘(h>+(aB(h), z, Z), 

where n(k) is a scalar function, meromorphic in h and independent on Z, 2. 

(17) 
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It is less trivial to see that the surface r possesses a halomorphic involution: 

a:r-+l-, CT : (lo], w2) --, (w,‘, w;‘>. (18) 

To prove it, let us fix a generic point h E r. Denote by &,,,, the Banach space of 
all locally square-integrable two-component complex-valued vector-functions on R2 with 
the periodicity properties (1 I). The space CWIl W_l is naturally dual to C,,, W2. Namely, if 

f(z3 2) E CW, W, and g(z, 2) E .CWFl Ui-l, then we define a scalar product by 7 

dtt A dt2LfiCtl + rt2, tl + St2)gl (rl + tt2, tl + tt2) 

0 0 

+.f2ttt + tt2, tl + tt2)g201 + rt2, t1 + St2)l. (19) 

Letf(O) = +(zut, w2,z, i),f”’ , . . .,f(“), . . . be the Jordan basis for the Dirac operator 
L in the space C,,,,. Also let g(O), g(l), . . ., g(“), . . . be the dual basis in C,;I,;I . The 

functions g(“) form a Jordan basis for the transposed operator LT. But L is symmetric with 
respect to this scalar product, thus it has a zero eigenfunction in the space LWYl ,,-I . Hence 2 
if (wl, ~2) E r, then a(zut, ~2) = (WY’, ~2’) E r. 

One of the main properties of the Bloch variety r is the following: r may be treated as 
a complete set of integrals of motion for the Modijed Novikov-Veselov hierarchy. 

Indeed, consider the space of all real-valued smooth double-periodic functions on C’ = 
R2 with a fixed pair of periods: 1 and t. The modified Novikov-Veselov hierarchy (MNV) 
(see Section 4) defines an infinite collection of flows on this space 

aucz, 2, t2n+1) 

at2n+l 
= K2n+l [W + 32n+l [U, 

auk z,12n+l) 
at2n+l = iG2n+l WI - K2n+~ [Ul>, 

(20) 

(21) 

where Kzn+ 1 [U] is some integro-differential operator in z, 2. Here tzn+ 1, &+ 1 are param- 
eters of these flows. 

Statement 1. Let U(z, 2, tzn+l) be a solution of one of the MNVequations; let L(tzn+l) be 
the corresponding two-dimensional Dirac operator (3) depending on an extra parameter 
t2,,+ 1; let r (tzn+ 1) be the corresponding family of Bloch varieties. 

Then r(tz,,+l) = r does not depend on the MNV time tzn+l. 

Remark 3. Here and below we use the following notational convention. If we have a 
complete proof of a mathematical result we call it Theorem or Lemma. If we do not have a 
complete strict proof yet we use the word Statement. 

An analogous statement is well-known for soliton systems with one spatial variable. In 
Section 4, we prove this fact at least for algebraic-geometrical potentials, corresponding to 
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varieties f of finite genus. (Sometimes such potentials are called finite-gap potentials.) It is 
rather clear that our proof can be extended to all smooth potentials, but to do such extension 
strictly we need more detailed information about analytic behavior of the Bloch functions 
near infinity in the momentum space, than we have now. An appropriate analytic lemma 
for the one-dimensional Dirac operator, corresponding to the surfaces of revolution, was 
proved by Schmidt in [ 161. 

There exists a different way (may be a more natural one) to get a strict proof of Statement 1. 
It would be interesting to prove the following approximation property: 

Conjecture 1. Any smooth potential can be approximated by the algebraic-geometrical 
ones with the same periods. 

From such a result it would follow that we can restrict ourself to the algebraic-geometrical 
potentials in our calculations. 

We have a map U(z, Z) + f [U] from the space of double-periodic real smooth func- 
tions to the space of complex subvarieties in (@\O)2, which is invariant under the whole 
MNV hierarchy. This map generates an infinite family of MNV ‘normal’ conservation 
laws. Namely, let wt be a generic point in C\O. Then we have an infinite collection of 
numbers wf’[U] such that (~11, wf’[U]) E r[U]. From Statement 1 it follows that these 

functionals I$‘[ ] U are the laws of conservation of the whole modijed Novikov-Veselov 
hierarchy. 

The functionals wik’[ ] U are essentially nonlocal. In Section 4, we show that under the 
same assumptions as in Statement 1 we can expand these functionals in some asymptotic 
series near infinity and the expansion coefficients give us the standard ‘quasi-local’ conser- 
vation laws. 

4. Conformal transformations of the Euclidean space R”, and MNV integrals of 
motion 

In Section 3, we have associated with any double-periodic smooth real potential a Bloch 
variety f [VI. The map is constant on the trajectories of the MNV hierarchy. In this section, 
we associate with any immersion of a torus into R3 a Bloch variety r and show, that r is 
invariant under conformal transformations of R3. 

Let M2 be a torus with a fixed basis of cycles a, b. Let X : M2 + R3 be a smooth 
immersion of M2 into the Euclidean space. The standard metric on R3 induces a conformal 
structure on M2. Let z be a conformal global coordinate on the universal covering space of 
M2. The coordinate z is defined uniquely up to affine transformations z -+ cz + d. If we 
assume that the shift of M2 along the a-cycle corresponds to the shift z -+ z + 1, then the 
coordinate z is defined uniquely up to shifts 

z+z+d. (22) 
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The immersion X and coordinate z define a potential U(z, 2) and therefore, also a Bloch 
variety f [U]. r[U] is invariant under the shifts (22), thus it is completely determined by 
the immersion X and the cycles a. b, and we may write f [X, U, b]. 

Conformal transformations of the Euclidean space [w3 do not affect the conformal struc- 
ture of M2, thus they leave the coordinate z invariant up to the shifts (22). Without loss of 
generality we shall assume that conformal transformations of [w3 do not change z. 

Now we are in position to formulate and prove our main result: 

Theorem 1. Let X : M2 -+ R3 be an immersion qf a torus with a fixed basis of cycles 
a, b into the Euclidean space; let f [X, a, b], be the corresponding Bloch varie9. Then 
T[X, a, b] is invariant under conformal transformations of&. 

Proof of the Theorem. 
Step I. To start with, let us recall the well-known facts about the group of conformal 

transformations of the standard Euclidean metric on lR3 (or on the sphere S3) (see for 
example [3]). This group is generated by the following transformations: 
(1) Translations Xi + Xi + (Xu)i. 
(2) RotationsX -+ AX, A E SO(3). 
(3) Dilations X + kX, k E R 
(4) Inversions 

Xi - (XO)i xi -+ (X - x0,x - X0). (23) 

(5) Reflections 

x -+ x - 2W(V, X), (V, V) = 1. (24) 

The connected component of the identity of this group is isomorphic to SO( 1,4) (see [3, 
p. 1431). The corresponding Lie algebra is generated by the following basis of infinitesimal 
transformations: 
(1) Translations P,: 6Xi = &,. 
(2) Rotations Gnnh, a < b: 6Xi = 8ibX, - &Xb. 
(3) Dilation D: &Xi = Xi 
(4) Inversions K, 

6Xi =2XiX,-fiiakXjXj. (25) 
j=l 

Step 2. Let us calculate deformations of the potential U(z, Z), the eigenfunction P(z, Z) 
and the constants Cj in formulas (5) corresponding to all infinitesimal conformal transfor- 
mations of [w”. 
(1) Translations simply shift the constants Cj andchange neither l/(z, Z) nor V(z, 2). Thus, 

they do not change T[X, a, b] and, without loss of generality, we can assume 

C, =o, j = 1,2.3. (26) 
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(2) A simple direct calculation based on the representation (6) (we do not like to reproduce 
it here) shows that the rotations in R3 correspond to the following transformations of 
the eigenfunction !P(z, Z) 

where (Y and /3 are some complex parameters. 
Both functions, !P(z, Z) and 

(28) 

satisfy the Dirac equation (4) with the same potential U(z, 2). Thus, the rotations do 
not change the potential and T[X, a, b]. 

(3) The dilation is generated by the scaling transform 

W(z, Z) = ;*‘(z, Z) (29) 

and changes neither U(z, Z) nor T[X, a, 61. 
(4) The only nontrivial transformations of the Dirac operator correspond to the inversion 

generators. Up to conjugations by rotations all generators (2.5) are equivalent. Thus, it 
is sufficient to prove that f [X, u, 61 is invariant if we apply the generator -K3: 

6x1 = -2X1X3, 6K2 = -2X2X3, 6X3 = -x,2 + x; + x,2. (30) 

Let us introduce the following notation 

W(z, Z) = XI (z, Z) - iXz(z, 2). (31) 

The transformation (30) corresponds to the following transformation of the function 

@(z, Z) 

WI (z, Z) = -X3(z,Z)Pt (z, Z) + iW(z, Z)&(z, Z), 
8P2/2(z, Z) = -X3(z, Z)P2/2(z, Z) - iW(z, Z)% (z, 2). 

Let us check it 

(32) 

c 

6x3(z,i) = - 
s 

[(6~2(z'.z')~,(z',z') + P2(z'. Z')S'h(z', 2')) dz' 

:0 

+ (cwl(z', z')&(z', Z') + PI (z', Z')S*2(z', Z')) @‘I 

z- s [(-2Xs(z’, ?,')P2'2(7.', Z')%(z', i') 

ZO 

- iW(z', ~')lY~(z', Z') - i@(z’, Z’)Ly22(~‘. 2’)) dz’ 

+ (-2Xs(z’, 1’)Wt (z’. Z')*2y2(z', Z') 

+ iw(z', j')G;(z', z') + iti(z’, Z’)pY:(z’, 2’)) @I 
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=- .I [(2X3(z’, z’)(azJX3(Z’, 2’)) - W(z’, z’)(WV(z’, Z’)) 

- W($, z’)(a,, w(z’, 2’))) dz’ + (2X3(z’, Z’)(+X3(z’, 2’)) 

_ w(~‘, z’)(~,,W(~‘, j’)) - W(z’, z’>(+ W(z', i'))f) di’l 
z 

=- s [(a,tx;(z’, 2) - a,~(z’, Z’)*(z’, Z’))) dz’ 
10 

+ (a,,X,2(Z’, 2’) - a,,(w(z’, z’)W(z’, 2))) di’l 
zz W(z, i)W(z, 2) - x;<z, 2) 

6W(z, 2) = i 2[6q2(z’, z’)*z(z’, Z’) dz’ - DP, (z’, Z’M (z’, 2’) di’l 
zo 

c 

= s 2[( - x3($, z’>#(z’, Z’) + w(z’, Z’)% (z’, Z’>‘P2(z’, ?‘)I dz’ 

ZO 

+ (x3(z’, z’y@(z’, 2’) + w(z’, z’)+2y2(z’, Z’M(z’> Z’)) di’l 
c 

= 2 
s 

[( - ~3(~‘, j’)(a,,w(z’, z’)) - w(z’, z’)(a$~3(~‘, 2’))) dz’ 

zo 

+ ( - x3(z’, Z’)(+W(z’, Z’)) - W(z’, Z’)(&$f,(z’, 2’))) dZ’1 
L 

= -2 s [(az,(x3(z’, z’>w(z’, 2))) dz’ 
ZO 

+ ((a,((x3(z’, Z’)W(z’r 2’))) di'l 

= -2W(z, Z)X3(Z? Z) 

The corresponding transformation of the potential U (z, 2) reads as 

HY(z, 2) = @l(Z, Zy&(z, Z) - p2y2(z, zP2y2(z, a. (33) 

Step 3. Let us calculate the deformation of the Bloch functions corresponding to (33). 
Let $(A, z, 2) be the Bloch function of L. For any h such that at least one of the functions 

Im px(h), Imp,(h) is not equal to zero (‘non-physical’ h) define the following pair of 
functions 

z 

~,(h, z, 2) = 
s 

q2(h, z’, z’)$ (z’, 2’) dz’ + $l(k, z’, ?)+2(z’. 2’) dZ’, 

cc 
Z (34) 

Q2(h, z, 2) = 
s 

+2(h, z’, Z’)Y2(z’, Z’) dz’ - @l(h, z’, ?M(z’, 2’) d?‘, 

03 
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where the integrals are taken along an arbitrary path in the z-plane, connecting the points z 
and 00 such that the integrand decays exponentially along this path. The integrands in (34) 
are closed l-forms, thus the integrals do not depend on a concrete choice of the path. Using 
the same arguments as in Section A.2 we may easily prove that LZJ (h, z, 2) and L&(h, z, Z) 
are meromorphic in h outside infinity. 

The function Ik(z, Z) is double-periodic or anti-periodic in z (see (9)), thus the functions 
I21 (h, z, Z), R2(h, z, Z) have the following periodicity properties: 

~k(~,z+l,z+l)=Wl~l(h)~k(h,z,Z) k=l 2. 
Qk(h, z + r, z + 7) = W22U2(h)&(h, z, Z) ’ 

(35) 

(see (9) for the definition of Wt , H.4.) 

Lemma 1. The variation of the Bloch function +(A, z, Z) corresponding to (33) reads as 

WI@, z, Z) = Ql(h, z, .?)%(z, a - .Rz(h, z, zP22(z, Z) + a(k)@1(h, z, Z), 

S@2@, z, Z) = filch, z, a*21/2(z, Z) + S22(h, z, Z)%(z, Z) + a(h)$2(h, z, Z), 
(36) 

where u(h) is some meromorphic function, fixed by the normalization condition: 

SlcIl@, z, .i) + 8$2(h, z, Z)l,=,, = 0. (37) 

Proof of Lemma 1. To start with, let us recall a simple fact from Bloch theory (see for 
example [lo]). 

Generically, if we calculate variations of the Bloch function, we deform r, and we 
cannot assume both 6wt (A) = 0 and Swz(h) = 0 simultaneously. To compare functions on 
different subvarieties in C2, we have to fix some connection. The simplest way to do this is 
to assume 6wt (L) = 0. 

Then the variation of the Bloch function can be found as the unique solution of the 
linearized Dirac equation 

SL$J(A, z, Z) + L6qqh, z, 2) = 0 (38) 

satisfying (37) such that 

S@(h, t] + tt2, t1 + 32) = O([l + It2I],ipl(h)tl+ip2(h)r2). (39) 

A simple direct calculation shows that (36) solves (38). From (35) and (9) it follows, that 

W(Wl, w2, z + 1, z + 1) = WlW(Wl, w2, z, a, 

6+(uJl, w2, z + r, i + 7) = W26$7(Wl, w2, z, Z), 
(40) 

thus variations of the type (36) satisfy (39). This completes the proof. 0 

The function S@(h, z, 2) defined by (36) has the same periodicity properties as the orig- 
inal Bloch function $(A, z, 2) (see formulas (11) and (40) respectively). Thus, our special 
variations satisfy Swt (h) = 0 and Swz(h) = 0 simultaneously. 

Step 4. From (36) it follows that if we apply infinitesimal conformal transformation - K3 
to our immersion, the Bloch functions of the deformed Dirac operator are meromorphic on 
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the same variety T[X, u, b] as the original Bloch functions and have the same multipliers 
WI, ~2. Thus, our deformation does not change T[X, a, b]. This completes the proof of 
Theorem 1. 0 

Example 1 Surfaces of revolution. Let y be a closed non-self-intersecting curve in the 
half-plane X2 = 0, XI > 0 in [w3. Rotating y about the axes Xl = X2 = 0 we get a surface 
of revolution. It is always a torus with a fixed pair of periods. 

Such surfaces are essentially simpler from the soliton point of view. Potentials U (z, Z) 
corresponding to such surfaces depend only on one real variable x = Re z. Instead of the 
fixed energy spectral transform for the two-dimensional Dirac operator, we have the spectral 
transform for the 2 x 2 first-order matrix differential operator in one variable. Periodic direct 
spectral transform for such operators (for both finite-gap and infinite-gap potentials) was 
developed by Schmidt [ 161. 

The MNV equations for surfaces of revolution are reduced to the well-studied modified 
Korteweg-de Vries equations (MKdV). In contrast with MNV, all higher MKdV conser- 
vation laws are local in terms of the potential. Eq. (33) in this situation was integrated by 
Melnikov [ 141 in the class of potentials sufficiently fast decaying at infinity. Our theorem for 
the surfaces of revolution does not follow formally from [ 141 because the periodic MKdV 
theory and the decay at infinity use different technical tools. Nevertheless, it is possible to 
essentially simplify our proof in this specific case. 

Appendix A. Modified Novikov-Veselov equations with periodic boundary 
conditions 

In this appendix, we discuss the zero-energy spectral transform for the double-periodic 
Dirac operator (and the generalized Weierstrass transform) from the soliton point of view. 
This transform is naturally connected with a completely integrable hierarchy of integro- 
differential equations with two spatial variables known as modified Novikov-Veselov 
hierarchy (MNV). 

Formally, the results of this section are not used in our proof of Theorem 1, but we hope 
they allow the reader to gain a better understanding of the problem. 

There is a rather large number of papers dedicated to the periodic problem for soliton 
equations (see, e.g. the textbook [21]). Nevertheless, the direct spectral transform for two- 
dimensional Dirac operator was never studied in such context in the literature available 
to us. Important properties of Bloch varieties for multidimensional Dirac operators were 
proved in [ 121, but they are not sufficient for the purpose of integrating the periodic MNV 
equations. 

From the point of view of the Bloch theory, the two-dimensional double-periodic Dirac 
operator is rather similar to the two-dimensional double-periodic Schrodinger operator. The 
fixed-energy direct spectral transform for the latter was constructed Krichever [lo] using 
soliton methods. This problem was studied in more detail by Feldman et al. (see [4]). In 
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Section A. 1, we describe the structure of the Dirac-Bloch variety by methods analogous to 
[lo]. It is important to remark that, in spite of the similarity between these two problems, 
we have to overcome some additional technical difficulties on the way. The asymptotic 
expansion of the Bloch variety gives us ‘quasi-local’ MNV conservation laws. 

The zero-energy scattering problem for the two-dimensional Dirac operator possesses 
an infinite-dimensional algebra of symmetries, generated by the MNV equations. These 
were constructed by Bogdanov [2]. In [2], a generalization of the Miura transform was 
defined, and it was shown that this transform maps the MNV equations to the Novikov- 
Veselov hierarchy (see [ 19]), associated with the fixed-energy two-dimensional Schrodinger 
operator. MNV equations in the space of functions, decaying at infinity, were integrated by 
the so-called method of &problem in [2]. Periodic MNV theory is discussed in Section A.3. 

In contrast with the one-dimensional soliton systems, the two-dimensional ones essen- 
tially depend on the boundary conditions. To define the periodic MNV hierarchy uniquely, 
we have to fix some constants of integration. One of the simplest way to do it is to define the 
MNV hierarchy in terms of the so-called Cauchy-Baker-Akhiezer (CBA) kernel. This ker- 
nel was introduced for the Kadomtsev-Petviashvily hierarchy by Orlov and Grinevich [6] 
(see also [7]). The MNV hierarchy in terms of the CBA kernel is discussed in Section A.2. 

Here, we always assume that U(z, Z) is real, smooth and double-periodic (8). 

A. 1. Asymptotic structure of the Bfoch variety 

For large Imp] and Imp2, the structure of the Bloch variety can be studied by the 
perturbation theory. Following [lo], we start from the Dirac operator with zero potential 
U(Z, Z) E 0. The corresponding Bloch variety is a union of two Riemann spheres r(O) = 
r(O) U r(O), f’,@) = r:‘) = @P’ with a coordinate h and 1 2 

+(h,z,i)= ’ ekz, he r/O), 0 0 
+(A, z, 2) = (f ek, h E l$O). 0 

(A.1) 

A pair J.1 E rt@), h2 E f,(o) is called resonant if 

e+-i2 = 1 ehlf-h2s = 1 
(A.9 

and non-resonant otherwise. All resonant pairs are given by the following formulas: 

*(“.“) _ nmRet - rn 
I - Imr 

+ inm, $4’ = i;(W) 
I ’ m,n E U. (A.3) 

Let us call a point h E rt@) non-resonant, if the pair h E ft@) and ,? E r:‘) is non-resonant. 

The antiholomorphic involution a0 maps r?) to ft@), thus it is sufficient to develop a 

perturbation theory only on f,@‘. 

Let E, R be some positive constants. Denote by rJ$ the domain obtained from CP’ by 

removing E neighbourhoods of all resonant points ii”‘“’ and the disk Ih( 5 R. 
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Lemma 2. For any E > 0, there exists a constant R(E) such that in the domain T’E(2(E) 
there exists an unique solution of the Dirac equation (4) with normalization (12) such 
that 

+(h, z + 1, Z + 1) = eh+h(h)$(h, z, Z), 
+(h, z + t, Z + t) = ehi+h(h)s+(h, z, Z), 

(A.4) 

where h(h) is uniquely dejined under the condition that h(h) -+ 0 as h + co. The functions 
+(k, z, Z), and h(k) are holornorphic in h in the domain fi2(F,. 

A proof of this statement is to appear in a forthcomming paper by Taimanov and Schmidt. 
It is rather long and quite technical. We do not want to present it here. 

Statement 2. The functions +(h, z, Z) and h (h), defined in Lemma 2, possess the following 
asymptotic expansions as h + cc 

( 
, / @l(Z,Z) I ~Z(L2) / dJ3k.i) I dJ4k.i) I ,,, 

qW,z,?) = e 
A(Z--Zl)+hv.)(Z--ZI) A. A.2 A3 A4 

Xl(Z,Z) x2cz,a x3(z.Z) X4(Z%Z) -+++f++++.. 
,I 12 A3 A4 ) 

(A.3 

h(h) = ? + $ + $ + . . (A.6) 

(The Bloch variety r has a symmetry a : (WI, ~2) -+ (WY’, wi’), a(h) = -h, thus all 
even coeficients in (A .6) are identically zero.) 

Unfortunately, at this moment we do not have any complete proof of the forgoing Statement. 
It is rather clear how to do it, but this proof needs a somewhat lengthy asymptotic analysis, 
and we are not in a position to do it presently. But we know that it is fulfilled at least in two 
important specific situations: 
(1) U (z, 2) is an algebraic-geometrical (or, equivalently, finite-gap) potential. It means, that 

the normalization of the zero-energy Bloch variety is algebraic (has finite 
genus). 

(2) U(z, Z) depend only on one real variable, x =Rez. This fact was proved by 
Schmidt [ 161. Such potentials corresponds to surfaces of revolution. 

We would like to remark that, in [4], a class of Riemann surfaces was introduced, which 
are in some sense similar to compact Riemann surfaces, and the zero-energy level of a 
two-dimensional Schriidinger operator belongs to this class. Therefore, it is natural to ex- 
pect that the zero-energy level of the two-dimensional Dirac operator also belongs to this 
class. 

To define the modified Novikov-Veselov equations (MNV) and their laws of conservation, 
it is sufficient to have a formal solution of the Dirac equation in the form (AS) and (A.6). 
Let us show that such a solution exists and is unique, if we assume that all &(z, Z), Xk(z, 2) 
are bounded in the whole z-plane. 
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Inserting (A.5) and 

h(h) zz ; + $ + g + . . . (A.7) 

in (4) we get the following system of equations 

Xl (Z, Z) = -U(z, 3, 
x~(z, Z) = -%xk-I(Z, Z) - U(z, Z)&I(Z, 3, k > 1, 

k-l 

&@k(z, .8 = u(z, ?)xk(Z, 2) - hk - xhj#k-j(Z, 2). 

j=l 

(‘4.8) 

We solve this system by induction. First, we find xl (z, Z); then 41 (z, 2); then x~(z, 2); then 
@2(z, Z) and so on. To find Xk(Z, Z), at each step we differentiate some double-periodic 
functions, obtained at previous steps. Thus, they are defined uniquely and are automatically 
double-periodic. To find @k(Z, Z), we have to invert the operator aZ in the space of functions 
bounded in the whole z-plane (any bounded solution Cj?&(z, Z) is automatically double- 
periodic). This is possible if, and only if, the mean value of the right-hand side is equal to 
zero: 

k-l 

u(Z, i)Xk(Z, .?> - hk - c hj4k-j(z, i) 

I 

= 0, 

j=l 

(A.9) 

where 

1 1 

((F(z, 3)) = 
ss 

dtt dtzF(tl + rr2, ti + 32). (A. 10) 

0 0 

Thus, at each step we find hk from (A.9) and then calculate f$k(Z, 2). The function @k(Z, 2) 

is determined by the system (A.8) uniquely up to adding an arbitrary constant. This constant 
is fixed by the normalization condition (12). 

Let us check that the function h(h) does not depend on the normalization point zt . If we 
change the point ~1, then we change the integration constants. But these constants can be 
arbitrarily shifted by multiplying the whole solution to a formal series in h 

+ h(z, 2) 
A. 

Xl (z, a 
-+ 

h 

-+ 
[ 
1+y+Ez+. . . 

1 

This multiplication does not affect h(h). 

(A. 11) 
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We have proved that the constants h 1, h3, hs, . . are completely determined by the 
potential U(z, 2) and all hzk = 0. Thus, we have constructed an infinite sequence of 
functionals h2k+t[U]. The formulas for the first two of them are: 

hl = -W2(z, ?I)), (A. 12) 

h3 = -((UCZ, Z)Uz:(z, Z) - (U2(i, Z) + hl)Vl,(Z, Z))), (A. 13) 

where 

Vl(Z, ii) = q’(u*(Z, Z) + hl). (A. 14) 

Let us point out that adding an arbitrary constant to V1 (z, 2) does not affect h3. 
We have defined an infinite collection of functionals h2k+t[U], k = 0, 1,2, . . The 

following statement explains why these functionals are so important. 

Statement 3. The quantities h2k+l [U] are laws of conservation for the whole hierarchy 
of the modi$ed Novikov-Veselov equations (MNV). 

Assuming that Statement 2 is fulfilled, we will prove this Statement at the end of the 
section. 

It is well-known in the soliton theory that integrable systems with one spatial variable, 
usually have infinitely many local laws of conservation . For multidimensional soliton 
systems, we normally have the opposite situation: almost all laws of conservation are non- 
local. Let us briefly discuss the case of the MNV hierarchy. 

A functional Q[U] is called local if it possesses the following representation: 

Q[Ul = ((q(U, U;, Uz, Uz,, Uz:, U;:, . .>))> (A.15) 

where the density q(. . .) depend only on U(z, 2) and a finite number of its derivatives. 
Of course h, [U] is local. The next laws of conservation h3[U] is non-local because the 
corresponding density depends on an auxiliary function VI~(Z, Z), and to calculate Vl~(z, 2) 
we have to know U(z, 2) on the entire z-plane. It it rather evident that higher functionals, 
h2k+l [U], are also non-local. This non-locality creates no serious problems if the potential 
is double-periodic, but it is very difficult to extend existing definitions to wider classes of 
boundary conditions. 

In [lo], the perturbation theory was developed also in the neighbourhood of resonant 
pairs. It can be shown that, for sufficiently large h, the surface r is obtained from r(O) by 
attaching small handles to the resonant pairs. We do not use this fact; thus, we do not want 
to discuss it now. However, we use the following property of r: 

Corollary 1. The Bloch variety r has two injinitepoints corresponding to thepoints A = CXJ 
in f:O) and rr’. We denote them by oo+ and co_, respectively. 

This statement follows immediately from Lemma 2. 
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Further, we shall use the following notation: h + oo+, where h is a point of r, always 
means that h tends to co+ in the domain fE((&); the notation h + oo_ always means that 

1 E r;icE). 

A.2. Cauchy-Baker-Akhiezer kernel 

To study symmetries of the soliton equation, it is convenient to use the Cauchy-Baker- 
Akhiezer kernel (CBA) (see [6]). In this section, we define the CBA kernel on the zero-energy 
Bloch variety of the two-dimensional Dirac operator. 

To start with, suppose (h, CL) is a pair of points in f such that 
(1) @(u, z, 2) is non-singular at the points v = h and u = a~. (Let us recall that, outside 

v = 00, the poles of $J(v, z, 2) arose due to normalization (12) and do not depend on 
z and Z.) 

(2) At least one of the following conditions is fulfilled: 

Im pt (A) - Im PI (K) # 0 or Imp?(h) - Im p2(~) f 0. (A.16) 

Then, we may define G(h, p, z, Z) by: 

(A.17) 

where 

dG@> PL, z’, 2’) = @2(h, z’, Z’)$2(ap, z’, 2’) dz’ - +l(h, z’, ?‘)+,(a~, z’, ?,‘)dj’. 

(A. 18) 

The integral in (A.17) is taken along some path y in the z-plane such that 
(1) y connects the point z with 00. 
(2) The form d&(h, p, z’, 2’) decays exponentially as z’ + co along y. 
Condition (A. 16) guarantees the existence of such a path. 

From the Dirac equation (4), if follows that the form d&(h, p, z’, Z’) is closed and that 
the integral (A. 17) is well-defined. 

The next step is to show that, for a fixed /*, our function w(h, P, z, i) is meromorphic in 
h on r outside the points co+ and co-. 

Suppose that a pair (h, p) satisfies the following condition, which is much weaker than 
(A.16). 

(2’). At least one of the following combinations: 

&Cm (1) - PI (P)> or 4-4 (P2 @I - p2bL)) is non-integer 

or, equivalently, at least one of the following inequalities is fulfilled 

(A. 19) 

(A.20) 
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Assume, that wt (h)w,‘(~) # 1. Then, we have either 

0 

w(h,p,z,z) = 
s 

&(h,p,z+t,Z+t)dt 

-cc 

or 

00 

G(h, F, 2, Z) = - 
s 

&(h, KU, z + t, Z + t) dt, 

0 

where 

(A.21) 

(A.22) 

&(h, PL, z', 3) = ~:!(h,z',z')~z(al_L,z',Z') - ~l(h,z',Z')~~(aE.L,z',z') 

(A.23) 

and r E R. 
If Iwt(k)w~t(~)I > 1, from (A.21) we get: 

w:w -+- + w: (FL) 
w:m -+*.. 

w:(h) 
&(A, I-L, z + t, i + t) dt 

I 

WI (cc) 
= WI(h) - WI(P) s A&@, /AU, z + t, Z + t) dt. 

0 

Similarly, if Iwt(k)w,‘(~)l 5 1, from (A.22) we get: 

(A.24) 

I 

w, p, z, 2) = 
WI(P) 

w(h) -WI(P) s &(h, /L, z + t, Z + t) dt. (A.25) 

0 

The formulas (A.24) and (A.29 define meromorphic continuations of the function G(h, 
CL, z, Z) to the entire surface r. To conclude the proof, it remains to note that formulas 
(A.24) and (A.29 coincide. 

If WOW;’ # 1, then the integration path can be chosen along the line z’ = z + tt, 
and we obtain a new representation for the same function W(k, p, z, Z): 

1 

o(h, w, z, Z) = 
w2(w) 

w2@) - w2b) s 
62@, p,z + tt,? + tt) dt, (A.26) 

0 
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where 

Now we are in position to define the Cauchy-Baker-Akhiezer kernel w(h. k, z, Z): 

w(h,p,z,Z) = -’ _ dm CPU) 
23l (o*(/.L Pu, z, ?I), 

4h, II, z, 3, 

where 

I 

k&(Pu, PL, z, 3)x = J c&(h, I-L, z + r, Z + t) dt. 

0 

(A.29) 

It is a simple exercise to check that the function (& (,u. W, z, Z)), does not depend on z and 
is even in p, i.e. 

(&(K Pt z, ?I), = Gx(‘Tp, OPL, z, 3)x, (A.30) 

(ui,(p,li,z,i))i=il+~+~+ f.., cc --f cQ+. (A.3 1) 

Lemma 3. The Cauchy-Baker-Akhiezer kernel w(h, ,u, z, Z), defined here, has the fol- 
lowing properties: 

(1) 

(2) 

(3) 

(4) 

For anyfied z, w (h, p, z, 2) is a meromorphicfunction of h and a meromorphic l-form 
in p (both on thefinite part of r). 
Forgeneric~,w(h,~,z,~)haspolesatthepolesof~(h,z,Z)andatthepointh =p. 
It is holomorphic outside these points on the finite part of r. 
For a generic h and p -+ h 

w(h, /.L, z, 2) = L dp - + regular terms. 
2ni p - h 

(A.32) 

or equivalently, 

d 
w(h, Pu, z, 2) = 1, 

WS 

(A.33) 

where S is a small contour surrounding the point h. 
Let p + CO+ and let h be a fixed point in r. Then, we have the following formal 
expansion: 

(A.34) 
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where 

k-2 

(A.35) 
I=0 

are differential operators in Z of order k - 1. The coeficients u~~‘(z, 7) do not depend 
on h and p; they are dtrerential polynomials of the asymptotic expansion coefficients 
$j (z, Z), xj (z, Z), j < k. Also, each function u :T’(z, Z) depends on ajnite number of 

(+I constants hzj+l, c2j . 

Similarly, for w + oo-, we have 

(A.36) 

where 

k-2 

(A.37) 
I=0 

(5) 
w@, 1, z + 1, z + 1) = w(h)w;‘(m(h, p, z, I), 
w(h, Ku, z + 5, z + t> = wz(h)w;‘(p)w(h, /_I,, i, 2). 

(A.38) 

Statement 4. !f Statement 2 is fulfilled, then the CBA kernel has the following additional 
properties: 
(1) The,formal expansions (A.34), (A.36) are asymptotic. 
(2) Let f (+)(A, z, Z) be the following formal series in h 

(A.39) 

2nireslw,,,+o(h, F, z. j)f 

(A.40) 

2nireslP=,+w(h, ,u, z, i)f(+)(~, Z, Z) = 0 
0 

i ehz (A.41) 

ash + oo-. 
Similarly, if f (-) (h, z, Z), is the following formal series in A 

f(_)(h, z, Z) = 
O” fk(-)(Z’Z) 

c 
kk 

,A: 

k=-N 

(A.42) 
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then 

2ni resl,=,_o(h, ,u z ?)f’-‘(P, z, Z) = 1 1 

(A.43) 

ash + oo-, and 

2rri resl,,,_w(h, b, z, j)f’-‘(P , z, &Lz (A.44) 

as h --f oo+. 

Remark 4. The formulas (A.40)-(A.44) require some comments. On the left-hand side, 
we have the formal series in p, thus the analytic definition of the residue as an integral does 
not work. Fortunately the terms, containing exponents in w, annihilate each other and we 
can define the residue as the coefficient of I /F: 

Proof of Lemma 3. 

(1) 

(2) 

(3) 

(4) 

We have constructed G(h, wu. z, 2) as a meromorphic function. The function (W,(p, 
p, z, Z)), is meromorphic in p on the entire f and dpt (FL) is a meromorphic l-form 
on f. Thus, (A.28) gives us a meromorphic function with appropriate tensor properties. 
From Lemma 2, it follows that, for generic p, 
(a) @(u, z, Z) is non-singular at the points u = p, u = a~, 

(b) (Q(PL, PU, z. Z)), # 0 
(c) wt(h)w~‘(~) = wz(h)w~‘(~) = 1, iff h = p. 

If p fulfill these conditions, if h # p and, if +(h, z, Z) is non-singular, then formulas 
(A.25)-(A.28) define a non-singular function of z, 5. 
Let h -+ I_L. To calculate the asymptotes of the CBA kernel, we expand the function 
wt (h) in (A.24) in a series in h-p, using (13) and (14). We see, that we have a first-order 
pole and the normalization in (A.28) is chosen so that the residue is exactly 1. 
To calculate the asymptotes of &(h, p, z, Z), as w -P cc, we substitute the asymptotic 
expansion (A.5) to (A. 17) and use the following asymptotic formula: 

(A.45) 

z s e'"f(h, z’, i’)dz’ + e”g(h, z’, ,jj’) djj’ = eh’ c(-l)“-’ z 
a+g@., z, 2) hk , 

k=l 

(A.46) 

where the functions f(h, z’, A?‘), g(h, z’. 2’) are some asymptotic series in h 

k=O k=O 

(A.47) 
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such that 

a,(eh”f(k, z’, 2’)) = &(ei.?g(k, z’, 2’)) (A.48) 

and all expansion coefficients .fk (z, i), gk (z, 2) are smooth functions, all derivatives of 
these functions are bounded in the z-plane. 

The proof of the formula (A.46) is standard and we do not reproduce it here. 
The last statement of the Lemma follows directly from the transformation rules for the 
Bloch functions. 0 

Proof of Statement 4. 

o@, pu, z, Z) = 

Assume, for definiteness, that h -+ oc+. If b -+ co+ then: 

1 ,@-PLf: dpL. (A.49) 

From (A.49) it follows, that 

2nireslyZm+o(h, P, z, Z)f(+‘(p, 2, Z) 

= reslw=,+ 
dp -e(A-P)ff(+)(p, z, j) + 0 i eh2. 

CL-1 0 (A.50) 

Applying the well-known formula 

dp n 
resl,=,--- 

A” n 2 0 
cc-kP = 0 nt0’ 

(A.51) 

we get the right-hand side of (A.40). 
If p + co_, then using (A.34), we get: 

o(h,p,z,Z) = [i~O”:~~~‘i)] ehZPP7dF. 

Formula (A.44) follows automatically from from (A.52). 
Formulas (A.43) (A.41) are proved exactly in the same way. 

(A.52) 

??

Remark 5. A formula, representing the Cauchy kernel on a Riemann surface as a semi- 
infinite sum of quadratic combinations of eigenfunctions first arose in the article [ 1 l] by 
Krichever and Novikov. In [ 1 l] the spatial variable x was discrete. In [6] the spatial variable 
was continuous, and the CBA kernel was defined as an integral similar to (A. 17). 

Remark 6. A form, similar to &(h, p, z, Z), but with integration path, starting from a finite 
point 2 in the z-plane, arises in the theory of finite Darboux transformations (see [13, 
formula (6.1.1 S)]). In fact, the same object arose in the generalized Weierstrass map. We do 
not discuss this analogy in our text, but it seems possible that this analogy has some deep 
implications. 
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A.3. ModiYed Novikov-Veselov equations 

73 

Lemma 4. Let p be a generic point in r. Define a deformation 8(F) of the function 
$(h, z, 2) associated with this point by: 

@lcIl (h, z, Z) = &(A, @, z, Z)@i (p, z, Z) + (Y@, pL)q1 (h, z, 3, 

@@*(L 2, a = W(i, I-c, z, Z)1c12(pu, z, Z) + a@, p)$J2(h, z, 3, 
(A.53) 

where u (h, p) is a meromorphic function in h, uniquely Jixed by the following requirement 

6(u)@,& z, 2) + c+)$Mh, z, z)Iz=z, = 0. (A.54) 

Then, (A .53) is a deformation of the Bloch function corresponding to the,following defor- 
mation of the Dirac operator 

@)L = 
[ 

0 -2Pu (z 2) I ’ 

G(p)u(z ’ 2 * 2) 0 1 
where 

(A.55) 

(A.56) 

For generic ,u, these deformations result in non-.self-adjoint Dirac operators (6 y)U(z, 2) 

# Sp’U(z, 2)) with complex-valued potentials. But the the Bloch function and the Bloch 
variety are well definedfor such Dirac operators. 

Proof of Lemma 4. A simple direct calculation shows that 

(L + ??@)L)(W, z, 2) + ??G(‘L+b(h, z, Z)) = O(2). (A.57) 

Thus, (A.53) defines deformations of the eigenfunction corresponding to (A.55). From 
(A.39, it follows that the new eigenfunctions satisfy (11) with the same multipliers WI (A), 
wz(h) as the old ones. Thus, the new eigenfunctions are defined on the same curve r and 
have the same periodicity properties. The last property plays a key role when we prove in 
the following that the functionals h2k+l [U] are invariant under some deformations. 

The deformations of the Dirac operator, generated by all 6(p), form a linear space. De- 
formations preserving the class of self-adjoint Dirac operators with real potentials are the 
most interesting ones. Let us check that the subspace of such deformations is sufficiently 
large. 0 

Lemma 5. Denote by A(/*) the following linear combination of deformations a(u): 

A(“’ = 
&“I + @P”) a(QcL) + @QfiL) 

GX(PL, Pu, z, Z))X + G(@P, QP, z, Z)), 
(A.58) 

(recall that (WY (p, t.~, z, Z)), is an even function in I_L (see (A .30)) and does not depend on 
z, 6. ;) 
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Then, AcW) acts on the space of self-adjoint Dirac operators with real potentials, 
i.e. 

A+J(z Z) = A+I(z Z) 1 ’ 2 ) 

= A(+(z Z)A%(z Z) 1 ’ 2 ’ 

= Jh (P? z, i)l42(~/-L z, Z) + vh(aL& z, Z)$J2(1*, z, Z) 

GxbL, P, z, a), 

and the Bloch variety r [ U] defined in Section 3 is invariant under these deformations. 

Proof of Lemma 5. Formula (A.59) follows directly from (A.56) and (A.%). The Bloch 
function Q(h, Z, Z), for real U(z, Z), has symmetry property (17), thus the right-hand side 
of (A.59) is real. As we pointed out in the previous Lemma, all deformations generated by 
8(b) do not change the Bloch variety r[U] and the multipliers wt, ~2. This completes the 
proof. If Statement 2 is fulfilled, then these flows do not change h2k+ 1 [U]. 17 

Eqs. (A.59) are essentially non-local and rather complicated; namely, the right-hand side 
is expressed in terms of the Bloch function, and it is difficult to calculate Bloch solutions 
either analytically or numerically. Fortunately, the space of deformations generated by all 
A(p) contains simpler equations such that the right-hand side can be expressed via U(Z, Z) 
in terms of quadratures. 

Let p -+ co. If Statement 2 is fulfilled, we may expand A(p) to the following asymptotic 
series 

&‘)U(z, 2) = -2 dP cc K2!c+1[U 
-c 

K2k+l [Ul 

id&) k=O k2k’2 
+ _ p2k+2 (A.60) 

(We write the term dp/dp(p) to gain some standard normalization of the MNV hierar- 
chy. If we omit this multiplier, our expansion coefficients will be linear combinations of 
Novikov-Veselov generators with constant coefficients, which in most situations is not 
essential.) 

Any K2k+l[U] is a quadratic polynomial of &(z, Z), y~(z, Z), 1 = 1, . . , 2k, with coef- 
ficients depending on the hzt_1 and Q, 1 = 1, . . . , k, where the c2/ are coefficients of the 
asymptotic expansion (A.3 1). 

For any odd integer 2k + 1, k 1 0, we have the following pair of flows on the space of 
real double-periodic functions: 

au(Z, 2, t2kfl) 

ask+1 
=2ReK2k+l[Ul, (A.61) 

au(Z, i, f2kfl) 

a&k+1 
= 21m K2k+t[U]. (A.62) 
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Definition 1. Eqs. (A.61) and (A.62) are called the modified Novikov-Veselov equations 
(MNV). 

Remark 7. To define the MNV flows associated to (A.61), (A.62), it is sufficient to have 
a formal expansion for the Bloch function and the function h(h). Thus, these flows are 
well-defined for any smooth potential. But without Statement 2 we cannot prove that they 
conserve the functional h2k+ 1 [U]. 

Using this definition of the MNV hierarchy, we may immediately prove Statement 3. All 
functionals h2k+r [U] defined in Section 3 are integrals of motion for all flows A(K), thus 
they are the laws of conservation for their expansion coefficients. 

The representation (A.61) may look rather unusual. To check that our definition of the 
MNV equations coincides with the standard one, let us calculate the deformation of the 
Bloch function, corresponding to the flows (A.61). To gain a standard answer, we shall use 
a normalization of the Bloch function different from the one used earlier. Instead of (A.54), 
we assume that the function a(h, II) in (A.53) is identically zero. 

Statement 5. Let the Statement 2 be valid. Then the deformation of the Bloch function 
corresponding to thejows (A .61) has the following representations: 

ati@, Z, 2, t2k+l) 

at2k+l 

= 2Jri{I’eS~K,=W+ +reSIF=m_}w(h, I-L, Z, 2, t2k+l, )P2kf1+(P, Z, ?, t2kfl) 

(A.63) 

as h -+ Do+ 

= k2k+1$‘(h, Z, 2, &+I) + (A.64) 

ash-too_ 

2k 

YE a2k+’ + aJk+’ + c y(Z, mf + wl(Z, ?)a; z z 
I 

+(h, Z, ?, t2k+l). (A.65) 
I=0 

Proof of Statement 5 (given the validity of Statement 2). By definition 

+ nilw@, CL, z, ZML z, 2) + Iok -iL z, ZhN-ii, z, Z)llk+m_ (A.66) 

(in this formula, we use DP = -_CL, 8~ = -fi). 
The residues in (A.63) are exactly the coefficients of the terms dp/F2kt2 and d,Ci/b2k+2 

respectively. Thus, these coefficients give us the action of Kzk+r [V] and K2k+l [U] on the 
Bloch function. 
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Formula (A.64) follows directly from (A.63) and formulas (A.40)-(A.44). 
To prove (A.65) let us substitute the asymptotic expansions (A.34), (A.36) in (A.63). We 

get: 

WI (A, Z, z, t2k+l) 

at2k+l 

2k 

+ c X&r(Z, s$-)[azl +2& Z, 2, t2k+l) 

I=0 I 

= a~kf’~l(~, Z, 2, t2kfl) + u(Z, i)aZk@2(h, Z, ?., t2k+l) 

(A.67) 

+ lower order terms 

= ]a:Zk+t + aZk+t }+t(h, z. Z, tZk+l) + lower order terms . 

(A.68) 

(A.69) 

(the x:-’ (z, Z) denote the expansion coefficients of the function @t (h, z,?) at the point 
h = 00~). A similar calculation shows the following relation: 

a@2(*~tlZ;:~t2k+~) = (a?+1 + azk+l }$2(h, z, Z, t2k+l) + lower order terms. 

(A.70) 

Statement 5 is proved. 0 

From (A.65) it follows that the MNV equations are the compatibility conditions for a 
pair of differential operators on the space of zero eigenfunctions of L. It is well known in 
soliton theory that such compatibility conditions are equivalent to the existence of standard 
L - A - B representations (see [2]). 

Remark 8. In this article, we constructed a soliton hierarchy in terms of the Cauchy- 
Baker-Akhiezer kernel. 

Using the CBA kernel we construct, in fact, a much wider hierarchy, including essentially 
non-local equations. All these equations preserve the spectral curve. In Section 4, we show 
that in fact the deformations corresponding to conformal transformations of the Euclidean 
space, lie in this wider hierarchy. 

In terms of U(z., Z), this hierarchy looks rather unnatural. But we may simultaneously 
treat it as a system of differential equations on a bigger collection of functions; namely we 
may consider the potential U(Z, Z) and the wave function in a finite number of fixed points 
on the spectral curve as unknown functions, connected by the Dirac equations. Similar 
systems associated with one-dimensional soliton equations were discussed in the literature 
(see [ 141 and references therein) from both a mathematical and a physical point of view. In 
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[ 1.51 it was shown, that starting from the KP equation we get a hierarchy naturally containing 
many other well-known soliton systems. 
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